Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 25(1): 90, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589969

RESUMO

Single-cell ATAC-seq has emerged as a powerful approach for revealing candidate cis-regulatory elements genome-wide at cell-type resolution. However, current single-cell methods suffer from limited throughput and high costs. Here, we present a novel technique called scifi-ATAC-seq, single-cell combinatorial fluidic indexing ATAC-sequencing, which combines a barcoded Tn5 pre-indexing step with droplet-based single-cell ATAC-seq using the 10X Genomics platform. With scifi-ATAC-seq, up to 200,000 nuclei across multiple samples can be indexed in a single emulsion reaction, representing an approximately 20-fold increase in throughput compared to the standard 10X Genomics workflow.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Cromatina , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Núcleo Celular
2.
bioRxiv ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38405933

RESUMO

While considerable knowledge exists about the enzymes pivotal for C4 photosynthesis, much less is known about the cis-regulation important for specifying their expression in distinct cell types. Here, we use single-cell-indexed ATAC-seq to identify cell-type-specific accessible chromatin regions (ACRs) associated with C4 enzymes for five different grass species. This study spans four C4 species, covering three distinct photosynthetic subtypes: Zea mays and Sorghum bicolor (NADP-ME), Panicum miliaceum (NAD-ME), Urochloa fusca (PEPCK), along with the C3 outgroup Oryza sativa. We studied the cis-regulatory landscape of enzymes essential across all C4 species and those unique to C4 subtypes, measuring cell-type-specific biases for C4 enzymes using chromatin accessibility data. Integrating these data with phylogenetics revealed diverse co-option of gene family members between species, showcasing the various paths of C4 evolution. Besides promoter proximal ACRs, we found that, on average, C4 genes have two to three distal cell-type-specific ACRs, highlighting the complexity and divergent nature of C4 evolution. Examining the evolutionary history of these cell-type-specific ACRs revealed a spectrum of conserved and novel ACRs, even among closely related species, indicating ongoing evolution of cis-regulation at these C4 loci. This study illuminates the dynamic and complex nature of CRE evolution in C4 photosynthesis, particularly highlighting the intricate cis-regulatory evolution of key loci. Our findings offer a valuable resource for future investigations, potentially aiding in the optimization of C3 crop performance under changing climatic conditions.

3.
bioRxiv ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38260561

RESUMO

Cis -regulatory elements (CREs) are critical in regulating gene expression, and yet our understanding of CRE evolution remains a challenge. Here, we constructed a comprehensive single-cell atlas of chromatin accessibility in Oryza sativa , integrating data from 104,029 nuclei representing 128 discrete cell states across nine distinct organs. We used comparative genomics to compare cell-type resolved chromatin accessibility between O. sativa and 57,552 nuclei from four additional grass species ( Zea mays, Sorghum bicolor, Panicum miliaceum , and Urochloa fusca ). Accessible chromatin regions (ACRs) had different levels of conservation depending on the degree of cell-type specificity. We found a complex relationship between ACRs with conserved noncoding sequences, cell-type specificity, conservation, and tissue-specific switching. Additionally, we found that epidermal ACRs were less conserved compared to other cell types, potentially indicating that more rapid regulatory evolution has occurred in the L1 epidermal layer of these species. Finally, we identified and characterized a conserved subset of ACRs that overlapped the repressive histone modification H3K27me3, implicating them as potentially critical silencer CREs maintained by evolution. Collectively, this comparative genomics approach highlights the dynamics of cell-type-specific CRE evolution in plants.

4.
bioRxiv ; 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-37786710

RESUMO

Single-cell ATAC-seq has emerged as a powerful approach for revealing candidate cis-regulatory elements genome-wide at cell-type resolution. However, current single-cell methods suffer from limited throughput and high costs. Here, we present a novel technique called single-cell combinatorial fluidic indexing ATAC-sequencing ("scifi-ATAC-seq"), which combines a barcoded Tn5 pre-indexing step with droplet-based single-cell ATAC-seq using a widely commercialized microfluidics platform (10X Genomics). With scifi-ATAC-seq, up to 200,000 nuclei across multiple samples in a single emulsion reaction can be indexed, representing a ~20-fold increase in throughput compared to the standard 10X Genomics workflow.

5.
Annu Rev Genet ; 57: 297-319, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-37562412

RESUMO

The ease and throughput of single-cell genomics have steadily improved, and its current trajectory suggests that surveying single-cell populations will become routine. We discuss the merger of quantitative genetics with single-cell genomics and emphasize how this synergizes with advantages intrinsic to plants. Single-cell population genomics provides increased detection resolution when mapping variants that control molecular traits, including gene expression or chromatin accessibility. Additionally, single-cell population genomics reveals the cell types in which variants act and, when combined with organism-level phenotype measurements, unveils which cellular contexts impact higher-order traits. Emerging technologies, notably multiomics, can facilitate the measurement of both genetic changes and genomic traits in single cells, enabling single-cell genetic experiments. The implementation of single-cell genetics will advance the investigation of the genetic architecture of complex molecular traits and provide new experimental paradigms to study eukaryotic genetics.


Assuntos
Genômica , Herança Multifatorial , Fenótipo , Genoma , Plantas/genética
6.
Annu Rev Plant Biol ; 74: 111-137, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36608347

RESUMO

cis-Regulatory elements encode the genomic blueprints that ensure the proper spatiotemporal patterning of gene expression necessary for appropriate development and responses to the environment. Accumulating evidence implicates changes to gene expression as a major source of phenotypic novelty in eukaryotes, including acute phenotypes such as disease and cancer in mammals. Moreover, genetic and epigenetic variation affecting cis-regulatory sequences over longer evolutionary timescales has become a recurring theme in studies of morphological divergence and local adaptation. Here, we discuss the functions of and methods used to identify various classes of cis-regulatory elements, as well as their role in plant development and response to the environment. We highlight opportunities to exploit cis-regulatory variants underlying plant development and environmental responses for crop improvement efforts. Although a comprehensive understanding of cis-regulatory mechanisms in plants has lagged behind that in animals, we showcase several breakthrough findings that have profoundly influenced plant biology and shaped the overall understanding of transcriptional regulation in eukaryotes.


Assuntos
Regulação da Expressão Gênica , Sequências Reguladoras de Ácido Nucleico , Animais , Sequências Reguladoras de Ácido Nucleico/genética , Genômica , Genoma , Desenvolvimento Vegetal/genética , Plantas/genética , Plantas/metabolismo , Evolução Molecular , Mamíferos/genética
7.
bioRxiv ; 2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36711646

RESUMO

The blueprints to development, response to the environment, and cellular function are largely the manifestation of distinct gene expression programs controlled by the spatiotemporal activity of cis-regulatory elements. Although biochemical methods for identifying accessible chromatin - a hallmark of active cis-regulatory elements - have been developed, approaches capable of measuring and quantifying cis-regulatory activity are only beginning to be realized. Massively Parallel Reporter Assays coupled to chromatin accessibility profiling present a high-throughput solution for testing the transcription-activating capacity of millions of putatively regulatory DNA sequences in parallel. However, clear computational pipelines for analyzing these high-throughput sequencing-based reporter assays are lacking. In this protocol, I layout and rationalize a computational framework for the processing and analysis of Assay for Transposase Accessible Chromatin profiling followed by Self-Transcribed Active Regulatory Region sequencing (ATAC-STARR-seq) data from a recent study in Zea mays. The approach described herein can be adapted to other sequencing-based reporter assays and is largely agnostic to the model organism with the appropriate input substitutions.

8.
Plant Genome ; 15(3): e20249, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35924336

RESUMO

Accessible chromatin regions are critical components of gene regulation but modeling them directly from sequence remains challenging, especially within plants, whose mechanisms of chromatin remodeling are less understood than in animals. We trained an existing deep-learning architecture, DanQ, on data from 12 angiosperm species to predict the chromatin accessibility in leaf of sequence windows within and across species. We also trained DanQ on DNA methylation data from 10 angiosperms because unmethylated regions have been shown to overlap significantly with ACRs in some plants. The across-species models have comparable or even superior performance to a model trained within species, suggesting strong conservation of chromatin mechanisms across angiosperms. Testing a maize (Zea mays L.) held-out model on a multi-tissue chromatin accessibility panel revealed our models are best at predicting constitutively accessible chromatin regions, with diminishing performance as cell-type specificity increases. Using a combination of interpretation methods, we ranked JASPAR motifs by their importance to each model and saw that the TCP and AP2/ERF transcription factor (TF) families consistently ranked highly. We embedded the top three JASPAR motifs for each model at all possible positions on both strands in our sequence window and observed position- and strand-specific patterns in their importance to the model. With our publicly available across-species 'a2z' model it is now feasible to predict the chromatin accessibility and methylation landscape of any angiosperm genome.


Assuntos
Cromatina , Magnoliopsida , Animais , Genoma , Magnoliopsida/genética , Redes Neurais de Computação , Fatores de Transcrição/genética , Zea mays/genética
9.
Plant Commun ; 3(4): 100308, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35605196

RESUMO

Understanding how cis-regulatory elements facilitate gene expression is a key question in biology. Recent advances in single-cell genomics have led to the discovery of cell-specific chromatin landscapes that underlie transcription programs in animal models. However, the high equipment and reagent costs of commercial systems limit their applications for many laboratories. In this study, we developed a combinatorial index and dual PCR barcode strategy to profile the Arabidopsis thaliana root single-cell epigenome without any specialized equipment. We generated chromatin accessibility profiles for 13 576 root nuclei with an average of 12 784 unique Tn5 integrations per cell. Integration of the single-cell assay for transposase-accessible chromatin sequencing and RNA sequencing data sets enabled the identification of 24 cell clusters with unique transcription, chromatin, and cis-regulatory signatures. Comparison with single-cell data generated using the commercial microfluidic platform from 10X Genomics revealed that this low-cost combinatorial index method is capable of unbiased identification of cell-type-specific chromatin accessibility. We anticipate that, by removing cost, instrumentation, and other technical obstacles, this method will be a valuable tool for routine investigation of single-cell epigenomes and provide new insights into plant growth and development and plant interactions with the environment.


Assuntos
Arabidopsis , Epigenômica , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Núcleo Celular/genética , Cromatina/genética , Cromatina/metabolismo , Epigenômica/métodos , Sequências Reguladoras de Ácido Nucleico , Transposases/genética , Transposases/metabolismo
10.
Curr Opin Plant Biol ; 65: 102094, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34390932

RESUMO

Plant tissues and organs are composed of functionally discrete cell types that are all defined by the same genome sequence. Cell-type variation in part arises from differential accessibility of cis-regulatory elements that encode the blueprints for transcriptional programs underlying cell identity and function. Owing to technical limitations, the role of cis-regulatory elements in cell identity maintenance, differentiation, and functional specialization has remained relatively unexplored in plant systems. Single-cell profiling has emerged as a powerful tool to circumvent these past obstacles by enabling unbiased charting of transcriptional and cis-regulatory states at the resolution of individual cells. Here, we review state-of-the-art single-cell approaches and analytical frameworks that have paved the way for establishing the link between cellular phenotypic variation and cis-regulatory mechanisms in plants.


Assuntos
Cromatina , Análise de Célula Única , Diferenciação Celular/genética , Sequências Reguladoras de Ácido Nucleico/genética
11.
Plant Cell ; 34(1): 503-513, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34648025

RESUMO

Epigenomics is the study of molecular signatures associated with discrete regions within genomes, many of which are important for a wide range of nuclear processes. The ability to profile the epigenomic landscape associated with genes, repetitive regions, transposons, transcription, differential expression, cis-regulatory elements, and 3D chromatin interactions has vastly improved our understanding of plant genomes. However, many epigenomic and single-cell genomic assays are challenging to perform in plants, leading to a wide range of data quality issues; thus, the data require rigorous evaluation prior to downstream analyses and interpretation. In this commentary, we provide considerations for the evaluation of plant epigenomics and single-cell genomics data quality with the aim of improving the quality and utility of studies using those data across diverse plant species.


Assuntos
Epigenômica , Sequências Reguladoras de Ácido Nucleico , Cromatina/genética , Genoma de Planta/genética , Plantas/genética , Controle de Qualidade
12.
G3 (Bethesda) ; 11(8)2021 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-34849810

RESUMO

Accessible chromatin and unmethylated DNA are associated with many genes and cis-regulatory elements. Attempts to understand natural variation for accessible chromatin regions (ACRs) and unmethylated regions (UMRs) often rely upon alignments to a single reference genome. This limits the ability to assess regions that are absent in the reference genome assembly and monitor how nearby structural variants influence variation in chromatin state. In this study, de novo genome assemblies for four maize inbreds (B73, Mo17, Oh43, and W22) are utilized to assess chromatin accessibility and DNA methylation patterns in a pan-genome context. A more complete set of UMRs and ACRs can be identified when chromatin data are aligned to the matched genome rather than a single reference genome. While there are UMRs and ACRs present within genomic regions that are not shared between genotypes, these features are 6- to 12-fold enriched within regions between genomes. Characterization of UMRs present within shared genomic regions reveals that most UMRs maintain the unmethylated state in other genotypes with only ∼5% being polymorphic between genotypes. However, the majority (71%) of UMRs that are shared between genotypes only exhibit partial overlaps suggesting that the boundaries between methylated and unmethylated DNA are dynamic. This instability is not solely due to sequence variation as these partially overlapping UMRs are frequently found within genomic regions that lack sequence variation. The ability to compare chromatin properties among individuals with structural variation enables pan-epigenome analyses to study the sources of variation for accessible chromatin and unmethylated DNA.


Assuntos
Metilação de DNA , Zea mays , Cromatina/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Humanos , Zea mays/genética
13.
G3 (Bethesda) ; 11(10)2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34568920

RESUMO

Accurate genome annotations are essential to modern biology; however, they remain challenging to produce. Variation in gene structure and expression across species, as well as within an organism, make correctly annotating genes arduous; an issue exacerbated by pitfalls in current in silico methods. These issues necessitate complementary approaches to add additional confidence and rectify potential misannotations. Integration of epigenomic data into genome annotation is one such approach. In this study, we utilized sets of histone modification data, which are precisely distributed at either gene bodies or promoters to evaluate the annotation of the Zea mays genome. We leveraged these data genome wide, allowing for identification of annotations discordant with empirical data. In total, 13,159 annotation discrepancies were found in Z. mays upon integrating data across three different tissues, which were corroborated using RNA-based approaches. Upon correction, genes were extended by an average of 2128 base pairs, and we identified 2529 novel genes. Application of this method to five additional plant genomes identified a series of misannotations, as well as identified novel genes, including 13,836 in Asparagus officinalis, 2724 in Setaria viridis, 2446 in Sorghum bicolor, 8631 in Glycine max, and 2585 in Phaseolous vulgaris. This study demonstrates that histone modification data can be leveraged to rapidly improve current genome annotations across diverse plant lineages.


Assuntos
Código das Histonas , Sorghum , Genoma de Planta , Anotação de Sequência Molecular , Sorghum/genética , Zea mays/genética
14.
STAR Protoc ; 2(3): 100737, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34430912

RESUMO

Coupling assay for transposase-accessible chromatin sequencing (ATAC-seq) with microfluidic separation and cellular barcoding has emerged as a powerful approach to investigate chromatin accessibility of individual cells. Here, we define a protocol for constructing single-cell ATAC-seq libraries from maize seedling nuclei and the preliminary computational steps for assessing data quality. This protocol can be readily adapted to other plant species or tissues with minor changes to reveal chromatin accessibility variation among individual cells. For complete details on the use and execution of this protocol, please refer to Marand et al. (2021).


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação/métodos , Cromatina , Células Vegetais/química , Análise de Célula Única/métodos , Técnicas de Cultura de Células , Cromatina/química , Cromatina/genética , Plântula/citologia , Zea mays/citologia
15.
Science ; 373(6555): 655-662, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34353948

RESUMO

We report de novo genome assemblies, transcriptomes, annotations, and methylomes for the 26 inbreds that serve as the founders for the maize nested association mapping population. The number of pan-genes in these diverse genomes exceeds 103,000, with approximately a third found across all genotypes. The results demonstrate that the ancient tetraploid character of maize continues to degrade by fractionation to the present day. Excellent contiguity over repeat arrays and complete annotation of centromeres revealed additional variation in major cytological landmarks. We show that combining structural variation with single-nucleotide polymorphisms can improve the power of quantitative mapping studies. We also document variation at the level of DNA methylation and demonstrate that unmethylated regions are enriched for cis-regulatory elements that contribute to phenotypic variation.


Assuntos
Genoma de Planta , Anotação de Sequência Molecular , Zea mays/genética , Centrômero/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Metilação de DNA , Resistência à Doença/genética , Genes de Plantas , Variação Genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Herança Multifatorial/genética , Fenótipo , Doenças das Plantas , Polimorfismo de Nucleotídeo Único , Sequências Reguladoras de Ácido Nucleico , Análise de Sequência de DNA , Tetraploidia , Transcriptoma , Sequenciamento Completo do Genoma
16.
Cell ; 184(11): 3041-3055.e21, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33964211

RESUMO

cis-regulatory elements (CREs) encode the genomic blueprints of spatiotemporal gene expression programs enabling highly specialized cell functions. Using single-cell genomics in six maize organs, we determined the cis- and trans-regulatory factors defining diverse cell identities and coordinating chromatin organization by profiling transcription factor (TF) combinatorics, identifying TFs with non-cell-autonomous activity, and uncovering TFs underlying higher-order chromatin interactions. Cell-type-specific CREs were enriched for enhancer activity and within unmethylated long terminal repeat retrotransposons. Moreover, we found cell-type-specific CREs are hotspots for phenotype-associated genetic variants and were targeted by selection during modern maize breeding, highlighting the biological implications of this CRE atlas. Through comparison of maize and Arabidopsis thaliana developmental trajectories, we identified TFs and CREs with conserved and divergent chromatin dynamics, showcasing extensive evolution of gene regulatory networks. In addition to this rich dataset, we developed single-cell analysis software, Socrates, which can be used to understand cis-regulatory variation in any species.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Elementos Reguladores de Transcrição/genética , Zea mays/genética , Arabidopsis/genética , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/fisiologia , Redes Reguladoras de Genes/genética , Genoma , Genômica , Elementos Reguladores de Transcrição/fisiologia , Análise de Célula Única , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética
17.
Genetics ; 217(1): 1-13, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33683350

RESUMO

Transposable elements (TEs) have the potential to create regulatory variation both through the disruption of existing DNA regulatory elements and through the creation of novel DNA regulatory elements. In a species with a large genome, such as maize, many TEs interspersed with genes create opportunities for significant allelic variation due to TE presence/absence polymorphisms among individuals. We used information on putative regulatory elements in combination with knowledge about TE polymorphisms in maize to identify TE insertions that interrupt existing accessible chromatin regions (ACRs) in B73 as well as examples of polymorphic TEs that contain ACRs among four inbred lines of maize including B73, Mo17, W22, and PH207. The TE insertions in three other assembled maize genomes (Mo17, W22, or PH207) that interrupt ACRs that are present in the B73 genome can trigger changes to the chromatin, suggesting the potential for both genetic and epigenetic influences of these insertions. Nearly 20% of the ACRs located over 2 kb from the nearest gene are located within an annotated TE. These are regions of unmethylated DNA that show evidence for functional importance similar to ACRs that are not present within TEs. Using a large panel of maize genotypes, we tested if there is an association between the presence of TE insertions that interrupt, or carry, an ACR and the expression of nearby genes. While most TE polymorphisms are not associated with expression for nearby genes, the TEs that carry ACRs exhibit enrichment for being associated with higher expression of nearby genes, suggesting that these TEs may contribute novel regulatory elements. These analyses highlight the potential for a subset of TEs to rewire transcriptional responses in eukaryotic genomes.


Assuntos
Cromatina/metabolismo , Elementos de DNA Transponíveis/genética , Regulação da Expressão Gênica de Plantas , Zea mays/genética , Cromatina/genética , Epigênese Genética
18.
Artigo em Inglês | MEDLINE | ID: mdl-38410680

RESUMO

Chromatin accessibility, or the physical access to chromatinized DNA, is a widely studied characteristic of the eukaryotic genome. As active regulatory DNA elements are generally 'accessible', the genome-wide profiling of chromatin accessibility can be used to identify candidate regulatory genomic regions in a tissue or cell type. Multiple biochemical methods have been developed to profile chromatin accessibility, both in bulk and at the single-cell level. Depending on the method, enzymatic cleavage, transposition or DNA methyltransferases are used, followed by high-throughput sequencing, providing a view of genome-wide chromatin accessibility. In this Primer, we discuss these biochemical methods, as well as bioinformatics tools for analysing and interpreting the generated data, and insights into the key regulators underlying developmental, evolutionary and disease processes. We outline standards for data quality, reproducibility and deposition used by the genomics community. Although chromatin accessibility profiling is invaluable to study gene regulation, alone it provides only a partial view of this complex process. Orthogonal assays facilitate the interpretation of accessible regions with respect to enhancer-promoter proximity, functional transcription factor binding and regulatory function. We envision that technological improvements including single-molecule, multi-omics and spatial methods will bring further insight into the secrets of genome regulation.

19.
Proc Natl Acad Sci U S A ; 117(38): 23991-24000, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32879011

RESUMO

The genomic sequences of crops continue to be produced at a frenetic pace. It remains challenging to develop complete annotations of functional genes and regulatory elements in these genomes. Chromatin accessibility assays enable discovery of functional elements; however, to uncover the full portfolio of cis-elements would require profiling of many combinations of cell types, tissues, developmental stages, and environments. Here, we explore the potential to use DNA methylation profiles to develop more complete annotations. Using leaf tissue in maize, we define ∼100,000 unmethylated regions (UMRs) that account for 5.8% of the genome; 33,375 UMRs are found greater than 2 kb from genes. UMRs are highly stable in multiple vegetative tissues, and they capture the vast majority of accessible chromatin regions from leaf tissue. However, many UMRs are not accessible in leaf, and these represent regions with potential to become accessible in specific cell types or developmental stages. These UMRs often occur near genes that are expressed in other tissues and are enriched for binding sites of transcription factors. The leaf-inaccessible UMRs exhibit unique chromatin modification patterns and are enriched for chromatin interactions with nearby genes. The total UMR space in four additional monocots ranges from 80 to 120 megabases, which is remarkably similar considering the range in genome size of 271 megabases to 4.8 gigabases. In summary, based on the profile from a single tissue, DNA methylation signatures provide powerful filters to distill large genomes down to the small fraction of putative functional genes and regulatory elements.


Assuntos
Metilação de DNA/genética , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Sequências Reguladoras de Ácido Nucleico/genética , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , DNA de Plantas/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Zea mays/genética
20.
PLoS Genet ; 16(2): e1008390, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32084124

RESUMO

Base J, ß-D-glucosyl-hydroxymethyluracil, is a modification of thymine DNA base involved in RNA Polymerase (Pol) II transcription termination in kinetoplastid protozoa. Little is understood regarding how specific thymine residues are targeted for J-modification or the mechanism of J regulated transcription termination. To identify proteins involved in J-synthesis, we expressed a tagged version of the J-glucosyltransferase (JGT) in Leishmania tarentolae, and identified four co-purified proteins by mass spectrometry: protein phosphatase (PP1), a homolog of Wdr82, a potential PP1 regulatory protein (PNUTS) and a protein containing a J-DNA binding domain (named JBP3). Gel shift studies indicate JBP3 is a J-DNA binding protein. Reciprocal tagging, co-IP and sucrose gradient analyses indicate PP1, JGT, JBP3, Wdr82 and PNUTS form a multimeric complex in kinetoplastids, similar to the mammalian PTW/PP1 complex involved in transcription termination via PP1 mediated dephosphorylation of Pol II. Using RNAi and analysis of Pol II termination by RNA-seq and RT-PCR, we demonstrate that ablation of PNUTS, JBP3 and Wdr82 lead to defects in Pol II termination at the 3'-end of polycistronic gene arrays in Trypanosoma brucei. Mutants also contain increased antisense RNA levels upstream of transcription start sites, suggesting an additional role of the complex in regulating termination of bi-directional transcription. In addition, PNUTS loss causes derepression of silent Variant Surface Glycoprotein genes involved in host immune evasion. Our results suggest a novel mechanistic link between base J and Pol II polycistronic transcription termination in kinetoplastids.


Assuntos
DNA de Cinetoplasto/metabolismo , Proteínas de Protozoários/metabolismo , RNA Polimerase II/metabolismo , Terminação da Transcrição Genética , Trypanosoma brucei brucei/fisiologia , Animais , DNA de Cinetoplasto/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genes de Protozoários , Glucosídeos/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Histonas/genética , Histonas/metabolismo , Leishmania/fisiologia , Mutação , Proteínas de Protozoários/genética , Interferência de RNA , RNA Polimerase II/genética , Timina/metabolismo , Uracila/análogos & derivados , Uracila/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...